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Potts model in the many-component limit 
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f Institute for Advanced Study, Princeton, NJ 08540, USA 
f Physics Department, Carnegie-Mellon University, Pittsburgh, PA 15213, USA 

Received 10 December 1979 

Abstract. The mean-field theory of the q-component Potts model is shown to be exact in the 
limit q +CO. This proves a conjecture by Mittag and Stephen. 

1. Introduction 

In analysing statistical mechanical models it is customary to begin with mean-field 
theory. Typically, this classical approximation yields incorrect values for critical 
temperatures and critical exponents. Nevertheless, it usually provides a qualitatively 
useful phase diagram exhibiting single phase regions, coexistence manifolds, critical 
manifolds, and so on, with the correct topology. Recently, however, it has been realised 
that this is not the case for the q-component or q-state Potts model (Potts 1952). This 
discovery has greatly revitalised theoretical interest in the Potts model and has sparked 
off a controversy as to the precise nature of its phase transition. 

For the two component (q  = 2) Potts model, that is the king model, mean-field 
theory correctly predicts a continuous phase transition in zero field. For q > 2, mean- 
field theory (Straley and Fisher 1973, Mittag and Stephen 1974) predicts a first-order 
transition in zero field, independent of the lattice dimension d. Of course, in one 
dimension, the model has no phase transition for short-ranged interactions. This 
discrepancy is expected. However, Baxter (1973) has argued convincingly that, in two 
dimensions, the Potts model in fact exhibits a first-order transition for q > 4  and a 
higher-order transition for q <4.  His conclusion is also firmly supported by series 
expansions (Straley and Fisher 1973, Kim and Joseph 1975) though, sadly enough, a 
proliferation of series expansions (Ditzian and Oitmaa 1974, Straley 1974, Enting 
1974, Kim and Joseph 1975) and renormalisation-group calculations (Golner 1973, 
Rudnick 1975, Zia and Wallace 1975, Burkhardt et a1 1976, Southern 1977) has not 
given a definite answer in three dimensions. 

Although mean-field theory clearly fails in general, Mittag and Stephen. (1974) 
point out that the theory provides an accurate description of the Potts model transition, 
in two or higher dimensions, when the number of components is large. Indeed, on the 
basis of comparison with exact results, they have conjectured that mean-field theory is 
exact in the limit q +CO. It is this conjecture that is proved in this paper. 

The rest of this section is devoted to a precise statement of the result. In 00 2 and 3 
we obtain upper and lower bounds on the free energy that coalesce with the mean-field 
free efirigy in the limit q + W .  Since the application of the lower bound in 0 3 is 
restricted to finite-range interactions a supplementary argument for long-range inter- 
actions is given in § 4. 
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The Hamiltonian for the q-state Potts model is 

H z - 4  1 J i j S ( a j , ~ ~ j ) - h  1 S(aj, 1) 
i J E . 4  i E A 

where the vectors i and j label the sites of a regular infinite lattice 9, A is a finite subset 
of 2, S( * , 3 ) is the Kronecker delta, and the q possible states at each site are given by 
c y ,  = 1 ,2 ,  . . , , q. The parameters Jij = Jii (we set Jii = 0) are pair interaction strengths 
and h is a symmetry breaking field. The partition function is 

Z,t(P) = Tr exp(-PW ( 2 )  

where p = l / k T  and Tr (trace) denotes a multiple sum over the q states allowed at each 
site. The free energy per site $ ( p )  in the thermodynamic limit is given by 

where /AI is the number of sites in A. 
We will assume that the interactions are ferromagnetic and translationally invariant, 

(4) Ji j  = J ( i  - j )  2 0, 

with sufficiently rapid decay that 

Under these conditions (see Ruelle (1969 ch 2) or Israel (1979 ch 1))  the limiting free 
energy (3) exists and does not depend on the choice of boundary conditions. We will 
make use of this freedom by choosing periodic boundary conditions to derive the upper 
bound on the free energy in § 2, and a different set of boundary conditions to derive the 
lower bound on the free energy in § 3. 

The result we prove is the following. 

Theorem. Let (L(p) be the free energy (3) for the Potts model (l) ,  with interactions 
satisfying (4) and ( 5 )  and h 5 0. Then in the many-component limit 

lim (L(P In 4 )  = lim $MF@ In q )  = $&) 
q+* 4 - a  

where (LMF(@) is the mean-field free energy and 

The factor in q which appears in the argument of $ in (6) is essential if one is to 
obtain a non-trivial result in the limit q+m.  The physical reason for this is that 
increasing q increases the entropy of the system. To compensate, the interactions (Jij 
and h )  must be increased by factors of In q and the free energy decreased by a factor 
In q. Equivalently, and more simply, we rescale the inverse temperature p. 

In the statement of the theorem we have omitted to write down an expression for the 
mean-field free energy ( k ~ ~ ( p ) .  An explicit formula, equivalent to that of Mittag and 
Stephen (1974), will be derived in the next section. At this juncture it is perhaps also 
worth mentioning that the mean-field free energy $MF(p)  can be obtained by solving the 
equivalent neighbour model. This model, which is defined by setting all the interactions 



Potts model in the many-component limit 2145 

Jij = J/iAl in ( l ) ,  is of course not a genuine statistical mechanical model. With more 
effort, however, the mean-field free energy can be derived rigorously by starting with 
the Hamiltonian (1) and taking a long-range interaction limit, or an infinite coor- 
dination number limit, after the thermodynamic limit. This approach to mean-field 
theory has the benefit of avoiding phenomenology, but since these matters do not bear 
directly on our present considerations, we forego giving the details and refer the 
interested reader to Thompson (1972 ch 41, Thompson and Silver (1973) and Pearce 
and Thompson (1978). 

2. Mean-field theory as an upper bound on II/ 

In this section we use the Gibbs-Bogoliubov variational principle to show that 

$ ( P )  $MF(P) (8) 

where $ M F ( ~ )  is the mean-field free energy. Although we are specifically concerned 
here with the Potts model, we remark that the Gibbs-Bogoliubov variational principle 
(see, for example, Falk 1970) and the arguments leading to (8) are, in fact, quite general 
and are well known in other contexts. 

Let H be defined by (1) and impose periodic boundary conditions so that 

and J* does not depend on i. An upper bound (Falk 1970) on the free energy for this 
system is then given by 

-@-' In ZA(p) s T r ( p H )  + p-' Tr(p In p )  (10) 

where p is any trial probability distribution. One way to obtain the mean-field theory 
(for example, Blume er al 1971) is now to minimise this upper bound with respect to 
variational parameters in the probability distribution p, which is chosen so that the ai 
are statistically independent, i.e. 

Motivated by symmetry considerations, we choose 

P if ai = 1 

where O S p  S 1 and p is independent of i. If we now evaluate the right side of (lo), 
minimise with respect to p and take the thermodynamic limit, using (9), we obtain the 
desired inequality (8) with 

$MF(@) = min [ - 4 p 2 + - ]  (1 --d2 -hp+P-'[p l n p + ( l - p )  In (-)]I. 1-P (13) 
o s p r 1  q - 1  q -1  

A convenient order parameter for the mean-field theory turns out to be 
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If we eliminate p in (13), in favour of x, we obtain precisely the Mittag and Stephen 
expression for the mean-field free energy. In any case, if we replace p by p In q in (13) 
and take the limit q + CO, the minimum over 0 < p < 1 yields the right side of (7). 

3. A lower bound on t,b 

To obtain an upper bound on the partition function and thus a lower bound on the free 
energy CL it is convenient to employ a different set of boundary conditions on the finite 
set A, and to restrict the interactions to finite range. Namely, we shall assume that cyi = 1 
for all sites i not in A, and write 

H = - $  1 1 Jf c y J ) - h  a(aI7 
I E A  I E h 

where, for a fixed distance R, we define the truncated interactions 

'11 for Ii - j l <  R 
Jf: = I O  otherwise. 

The fact that the boundary terms in (15) do not contribute to the free energy $ in the 
thermodynamic limit follows by standard arguments (again see Ruelle (1969 ch 2) or 
Israel (1979 ch 1)). 

For h z 0, which we shall henceforth assume is the case, the minimum value of H, 

Ho = -Ihl(iJR + h ) ,  (17) 

occurs when all a ,  (for i E A as well as i& A) are equal to 1. The basic inequality H 3 Ho 
can now be suitably improved by using graphical methods. With every configuration of 
the system, i.e. with every choice of the cy,, i E A, we associate a graph G whose vertices 
are the sites at which cy, f 1, with edges connecting the vertices provided cy, = a J ( # l )  
and Ii - j l <  R. We also let p be the number of connected components in G. 

Many configurations may be associated with the same graph G, but it is evident that 
their number cannot exceed (q  - l)@, since the are identical in each component. The 
number of distinct graphs is itself bounded by 23"'z, where z is the number of sites on the 
lattice within a distance R of a particular site. This estimate holds because a graph is 
determined by specifying all its edges, and there are at most $lAlz possible edges 
connecting pairs of sites in A separated by a distance less than R. 

We now assert that a lower bound to H in (15) is provided by the formula 

H * H o + p ( i J R + h )  (18) 
where p is defined for a choice of a ,  in the manner described above. To see this, note 
first that the number of sites with cy, # 1 is at least p ; this accounts for the p h  term in 
(18). Next, note that for any connected component C in the graph G and for any vector 
r connecting two sites on 2, there will always be some site i in C such that the site i + r is 
not in C. Indeed, since C is finite, one can choose any i E C, and if ( i  + r )  E C one can 
consider ( i  + r )  + r, and so forth, till one finds a site not in C. 

Now if i E C and ( i  + r )  & C, it follows from the definition of the graph that a ,  f c y l r r  

provided / r /  < R, and thus the corresponding term in (15) is zero, rather than -$JR(r )  as 
it is in the case where all cy, = 1. Since for each combonent and for each r with Iri < R we 
can identify a corresponding increment in H over Ho, we have established the validity 
of the J R  term in (18). (The reader concerned about 'double counting' of pairs of sites 
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(i, i + r ) ,  when each belongs to a connected component, should note the corresponding 
‘double counting’ present in (15).) 

Combining (18) with the estimates which precede it, we obtain 

It then follows from (3) and (17) that 

t,b(p) s - t p - ’ ~  --@-I ln{q +exp[p(tJR + h ) ] } .  (20) 
Upon replacing p by p In q in this expression, and taking the limit q + 00, one obtains as 
a lower bound the right side of (7), with J R  in place of J. 

4. Interactions of long range 

The arguments in (j§ 2 and 3 establish the theorem stated in § 1 for interactions of 
strictly finite range, since in this case we can always choose R large enough so that J f :  in 
(16) is identical with Jij. When the interactions are not of strictly finite range, but ( 5 )  is 
satisfied, our arguments yield (7) provided the limit R + 00 is taken after the limit q + 00, 

since 

If we wish to take the limit R + CO first, and then q + 00, we cannot make direct use of 
the lower bound (20) because z diverges with R. However, the standard arguments 
(Ruelle 1969, Israel 1979) noted earlier can be used to show that for any finite q and p, 

where ( L R  denotes the free energy (3) for the truncated interaction (16). In view of (21), 
the convergence of G R  to t,b as R + 00 is uniform in q and p, which means that (7) is also 
obtained in the case when the limit q +CO is taken after the limit R +CO. 
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